
Guaranteed Yet Hard to Find:
Uncovering FPGA Routing Convergence Paradox

Shashwat Shrivastava∗, Stefan Nikolić†, Sun Tanaka∗, Chirag Ravishankar‡,
Dinesh Gaitonde‡, and Mirjana Stojilović∗

∗EPFL, †University of Novi Sad, ‡AMD

Abstract—Routing is one of the major challenges of FPGA
compilation. PathFinder is a ubiquitous FPGA routing algorithm
used in industry and academia due to its ability to adapt to
arbitrary routing architectures and user circuits. However, to
this day, we do not fully understand why PathFinder works so
well and what its limitations are. When a circuit fails to route,
it is difficult to pinpoint the problem: architecture or algorithm.
Usually, in such cases, either Pathfinder is fine-tuned or routing
resources are added to the architecture to improve routability,
thereby ignoring the inherent inefficiencies that may exist in
Pathfinder, which further prevents us from designing silicon-
efficient architectures. In this work, to pinpoint the problem, we
construct constrained routing problems where nets have access
to limited but specific routing resources that guarantee a legal
routing solution. Yet, even with a state-of-the-art implementation,
PathFinder fails to find the guaranteed routing solution or
any other solution, highlighting issues specific to PathFinder.
The reduced search space makes the underlying behavior more
accessible for analysis and reasoning, allowing us to identify
inefficiencies in the current PathFinder paradigm and propose a
solution to address them. We uncovered that PathFinder’s greedy
approach of routing individual connections yields an inefficient
route tree, in terms of the total number of nodes. We then transfer
this insight—through a simple yet effective algorithm—from the
constrained to the standard setting, where the search space is not
reduced. By constructing more efficient route trees, the routed
wirelength and the number of routed connections were reduced
by 6.4% and 3.6%, respectively, on average.

I. INTRODUCTION

Routing runtime has grown significantly with the increasing
size of FPGAs [1] [2] and user circuits [3]. PathFinder [4]
has been the de facto standard algorithm for FPGA routing in
academia [5] and industry [6] [7] for more than 30 years [8].
PathFinder’s success has largely resulted from its ability to
adapt to arbitrary routing architectures and user circuits. In
cases, however, when it fails to route a circuit even with the
best achievable placements, either PathFinder’s parameters are
tuned [9] or, if the FPGA is in the design phase, additional
routing resources are added to increase routability [1] [2].

However, the aforementioned approaches overlook the in-
herent inefficiencies that may still exist in PathFinder, partly
because it is difficult to pinpoint if PathFinder is indeed the
culprit and, to some extent, because no framework exists to
identify its fundamental problems. Even Sinan Kaptanoglu, in

This work is partially supported by the Swiss National Science Foundation
(grant No. 182428) and the Ministry of Science, Technological Development
and Innovation of the Republic of Serbia (grant No. 451-03-137/2025-03/
200125 & 451-03-136/2025-03/ 200125).

his endorsement of the PathFinder paper [4] as one of the most
influential papers published in the International Symposium on
FPGAs between 1992 and 2011, mentions the following [8]:

Today, we are able to use the negotiated conges-
tion widely and very successfully. Despite that, why
it works so well eludes us at a theoretical level.

In this work, to identify if issues exist in PathFinder, we
construct constrained routing problems, where nets can access
limited but specific routing resources that ensure a legal
routing solution. Restricting access to particular resources
makes it easier for us to analyze the routes of the nets and
reason about PathFinder’s behavior. In contrast, a guaranteed
solution prohibits us from blaming the architecture when
the routing fails. Both combined, limited resources and a
guaranteed solution give us the means to identify fundamental
problems in PathFinder.

Upon routing in this constrained setting, we observe some-
thing surprising: instead of converging quickly with the re-
duced search space, not only does the runtime increase, but the
router even fails to converge. Intuitively, one would expect that
PathFinder would not steer a routable circuit to unroutability,
but in the current paradigm, it does.

In this work, we investigate the root cause of the unintuitive
convergence failure, which helps us uncover underlying inef-
ficiencies in PathFinder. Building on this understanding, we
propose a solution to address PathFinder’s inefficiencies and
improve performance.

The paper is organized as follows. Section II introduces the
FPGA model and provides an overview of PathFinder. Sec-
tion III details the methodology for constructing constrained
routing settings that guarantee a legal solution. Section IV
describes the experimental setup. Section V presents the
unexpected results of routing in the constrained setting. Sec-
tions VI and VII analyze the causes of PathFinder’s behavior.
Section VIII proposes a new paradigm for PathFinder. Finally,
Section IX evaluates its impact on routing in a standard set-
ting using industry-designed benchmarks and an architecture
closely resembling a state-of-the-art industrial one.

II. PRELIMINARIES

A. FPGA Model

Fig. 1a shows a high-level view of an FPGA. The routing
architecture comprises wires (grouped in routing channels),
switch blocks (SBs) (in gray), and input interconnect blocks

143

2025 IEEE 33rd Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM)

2576-2621/25/$31.00 ©2025 IEEE
DOI 10.1109/FCCM62733.2025.00060

CLB CLB CLB CLB

CLB CLB CLB CLB

CLB CLB CLB CLB

CLB CLB CLB CLB

s1

s3

s4

s2

t11 t31

t21

t12

4
1t

L1 L2

SB

(a)

CLB CLB CLB CLB

CLB CLB CLB CLB

CLB CLB CLB CLB

CLB CLB CLB CLB

s1

s3

s4

s2

t11 t31

t21

t12

4
1t

L1 L2

SB

(b)

Fig. 1: (a) A high-level view of an FPGA model showing CLBs and general routing interconnect with switch blocks (in gray)
and routing wires of lengths one and two, as well as four example nets and their legal routing paths. (b) Constrained routing
problems are constructed from legal paths by mapping each used wire instance to a group of wires of the corresponding type.
Routing is repeated, exploring the resources within the highlighted paths only. See Section III for more detail.

(IIBs) (not explicitly shown). SBs group routing multiplexers
providing connectivity between wires and between config-
urable logic block (CLB) output pins and wires. Similarly,
an IIB connects wires and CLB outputs to CLB inputs.

The FPGA model we use in this work is more complex
and closely resembles the AMD UltraScale+ architecture. The
routing channels comprise four wire segments corresponding
to wires of lengths 1, 2, 4, and 12 [6], [10], labeled as L1, L2,
L4, and L12, respectively. Each wire segment defines four
wire types, one per direction: north, south, east, and west.
In all FPGA tiles (logic, DSP, BRAM, I/O, etc.), each wire
type has eight wire instances, except L12, which has four.
For illustration purposes, only L1 and L2, with four instances
each, without explicit directionality, are shown in Fig. 1a.

Contrary to modern FPGA architectures with sparse IIBs,
we simplify the IIB by making it fully connected. This modifi-
cation eliminates the recently analyzed routing challenges [6],
[11], which PathFinder is not tuned for, allowing us to focus
solely on PathFinder’s intrinsic inefficiencies. Although not
routing within the IIB simplifies PathFinder’s task, the router
still fails to converge, as we will later demonstrate—further
reinforcing our conclusions.

B. PathFinder

The FPGA routing architecture can be modeled as a routing
resource graph (RRG) where nodes are wires and pins, and
edges are programmable connections (multiplexers) between
them [4]. Let this routing graph be G = (V,E), where V and
E are the sets of vertices and edges, respectively. Given the
circuit placement and the netlist, the goal of routing is to find
an overlap-free set of trees in the routing graph. The algorithm
most commonly used to perform routing is PathFinder [4].

Algorithm 1 briefly outlines the pseudo-code of a state-
of-the-art adaptive incremental router (AIR) [12], based on
PathFinder and implemented in the open-source Verilog-to-
Routing (VTR) framework that we use in this work [5].
PathFinder iteratively routes the nets until either congestion
(i.e., node overuse) is eliminated or the maximum number
of iterations is reached (Line 1). Each node is associated
with a cost, which dynamically increases based on the node
occupancy (i.e., the number of nets using the node) across
iterations. The cost is gradually increased to incentivize the
exploration of alternative paths. As defined in Eq. 1a, the cost
function of a node u has three components: the base cost, the
present congestion cost, and the historical congestion cost. The
present congestion cost in Eq. 1b reflects the node occupancy
within a single PathFinder iteration, increasing proportionally
with the node occupancy and scaled by a present congestion
factor, pres fac. On the other hand, the historical congestion
cost accumulates the overuse across iterations.

NodeCost(u) =PresentCost(u)·
HistoryCost(u) ·BaseCost(u),

(1a)

PresentCost(u) =pres fac · (1 +Occupancy(u)) (1b)

Each net is decomposed into two-point connections, which are
then routed sequentially (Line 2, Algorithm 2). As the routing
progresses, the routes of previous connections collectively
form the partial route tree of the net, as shown in Algorithm 2
(Line 5). Before routing the next connection, the nodes of the
tree are inserted on the heap (Line 3) to serve as a starting point
(Line 4). The heap is implemented as a priority queue-based
data structure that enables efficient traversal of the FPGA
routing graph by iteratively popping nodes with the lowest
cost and pushing their neighbors until the target is reached.

144

Algorithm 1 Pathfinding Algorithm for FPGA Routing
1: for iter in max_iterations do
2: for net in nets do
3: tree ← ROUTENET(unrouted_targets)
4: end for
5: for net in nets do
6: RIPUPCONGESTEDCONNECTIONS(net)
7: end for
8: if not congestion_exists then break
9: end if

10: end for

Algorithm 2 RouteNet Function
1: function ROUTENET(unrouted_targets)
2: for target in unrouted_targets do
3: heap ← INITHEAPFROMROUTETREE(target)
4: path ← FINDPATHFROMHEAP(heap)
5: UPDATEROUTETREE(path)
6: end for
7: end function

III. GENERATING ROUTING REGIONS THAT GUARANTEE
A LEGAL SOLUTION

To analyze PathFinder’s behavior, we design constrained
routing problems with a guaranteed legal solution. This is
achieved by first obtaining a legal solution and then using it
to construct a constrained problem where routing is restricted
to specific routing regions. Besides ensuring a legal solution,
this approach improves pathfinding efficiency by reducing
the search space and enables closer analysis of the router’s
behavior. The following subsection formalizes this method.

A. Routing Regions

Let N be the set of all nets to route. Each net n ∈ N
has a unique source sn and one or more targets (sinks) Tn.
A net with multiple targets is decomposed into two-point
connections (sn, tni) such that tni ∈ Tn ∀ i = 1, 2, ...,m
where m = |Tn|. A legal routing path for a connection (sn,
tni) can be represented as sn, v1, v2, v3, · · · , tni where vi ∈ V .

To generate routing regions that guarantee a legal solution
for each net, we first perform routing in the standard setting,
i.e., unconstrained setting. As an illustration, Fig. 1a shows
legal routing paths for four nets. Then, we replace the RRG
nodes in these legal paths with nodes from a new coarsened
routing resource graph Gc = (Vc, Ec). Here, Vc is the set
of the coarsened nodes and Ec the set of edges between
them. To map the routing paths from G to Gc, we define
a coarsening function C(v) that takes v ∈ V and outputs
v′ ∈ Vc. As a result, the original routing path for connection
(sn, tni) is converted to sn, C(v1), C(v2), C(v3), · · · , tni . The
resulting coarse paths define the constrained routing regions
with reduced search space for net n. This transformation is
repeated for the entire netlist, resulting in a constrained routing
problem suitable for analyzing PathFinder’s behavior.

Specifically, in this work, a coarse node v′ in Gc corre-
sponds to one wire type (Section II-A), i.e., it contains wires
(wire instances) of the same length and direction, originating
in the same tile. The function C(v) takes as input a wire and
outputs the corresponding wire type; for example, wires E10
to E17, representing eight east-directed wires of length one,

are mapped to a wire type E1. In Fig. 1b, shaded, colored
regions correspond to coarsened nodes (for simplicity, we only
show L1 and L2 segments, ignoring explicit mention of the
direction). Chaining the coarsened nodes in the same sequence
as the nodes in the original paths gives us the corresponding
coarse paths, which we term predefined paths. Finally, for the
constrained routing problem we obtained, we rerun PathFinder
for the same netlist, this time only along the predefined paths
(exploring the corresponding subset of routing resources of
G). We refer to this step as routing in the constrained setting.

B. Handling Reconvergent Nets

After constructing the constrained routing regions and re-
running PathFinder, we encountered a class of nets that
require special handling due to the challenges they present
in maintaining a valid tree structure. Consider Fig. 2a, which
shows a legal routing tree for a net n with two targets tn1
and tn2 , obtained in the unconstrained setting. Then, imagine
that after coarsening, nodes v2 ∈ V and v4 ∈ V map to the
same coarse node: C(v2) = C(v4), in Fig. 2b. As a result,
the coarse route tree reconverges after diverging at the source,
violating the fundamental property of a tree that every node,
except the root, should have exactly one parent.

When rerouted along the predefined, coarsened paths, the
connections to tn1 and tn2 follow the orange and blue paths
in Fig. 2b by construction. However, they may decide to use
the same wire within the reconverging coarse node. Let us
imagine that they use v from the coarse node C(v2) = C(v4).
In such a case, both C(v1) and C(v3) are valid parents of
v, and the router must decide which to keep to preserve the
tree property for the net. Discarding one of the two parents
results in one of the two connections taking a path that differs
from the predefined one, thereby violating the premise that a
connection should route through the predefined path.

To prevent the issue, we handle the reconvergent nets
differently when routing in the constrained setting: we do not
construct the coarsened paths for these nets. Instead, we load
the legal paths obtained from the unconstrained setting and
lock the corresponding routing resources so that the problem-
atic nets are not rerouted. Although these nets represent a small

v1 v3

v2 v4

tn1 tn2

sn

(a)

tn
1 tn

2

sn

C(v1) C(v3)

C(v2) = C(v4)

(b)

tn1

C(v1)

C(v2)

sn

(c)

Fig. 2: (a) Routing tree of an example net n with targets tn1
and tn2 . (b) Coarsened routing tree showing reconvergence of
n, occurring when v2 and v4 both map to the same coarse
node. (c) A coarsened tree of an arbitrary net (not the net
shown in (a)) and an edge from routing graph G between sn

and C(v2) bypassing coarse node C(v1) (see Section VI-A).

145

fraction of nets in our benchmarks (∼1% on average), they
are typically high-fanout nets spanning large FPGA regions.
Not routing them makes the routing problem somewhat easier.
However, even then, we will see that PathFinder struggles to
route the remaining nets. Thus, including reconvergent nets
would only exacerbate the problem we uncovered.

IV. EXPERIMENTAL SETUP

We use ISPD16 benchmarks (Table I), designed for
routability-driven research [13] and placements produced by
UTPlaceF [14], which won the contest for producing the
best placements for these benchmarks. We further use the
UltraScale architectural model from the VTR repository, which
features an FPGA with 480×168 tiles, and the VTR8+
router [5] in non-timing-driven mode, to focus solely on
congestion. To reduce net order dependence, we set pres fac
to five and keep it constant, as proposed by Zha and Li [15].
The other parameters are set to the default values of VTR8+,
except for the base cost, which is made proportional to the
frequency of the wire type. We set the base cost of L1, L2,
and L4 to one, whereas that of L12 to two, because there are
half as many L12s as other wires. The maximum number of
router iterations is set to 1000. Unless mentioned otherwise,
we use these parameters throughout this study. The artifacts
that enable reproduction of the reported results are available
in an online repository [16].

V. ROUTING CONVERGENCE PARADOX

When PathFinder routes each net along its specified (coars-
ened) path, we observe something surprising and unintuitive.
Although a legal solution is guaranteed to exist by how the
constrained problems are constructed (the router can simply
find the same route trees as in the legal solution from which
the particular constrained problem was obtained), PathFinder
fails to converge to a legal routing solution.

Table II lists the routing results for all benchmarks. All
but one hit the maximum number of iterations and failed to
converge. Fig. 3 shows the drop in overused nodes across
iterations and compares it with the unconstrained setting on
benchmark FPGA09, which is large and has a high Rent
exponent (Table I). Although the constrained setting starts (at

TABLE I: Characteristics of ISPD16 contest benchmarks,
including Rent’s exponent p.

Benchmark p LUTs FFs RAM DSP Nets (K)

FPGA01 0.4 50K 55K 0 0 105
FPGA02 0.4 100K 66K 100 100 168
FPGA03 0.6 250K 170K 600 500 429
FPGA04 0.7 250K 172K 600 500 430
FPGA05 0.8 250K 174K 600 500 433
FPGA06 0.6 350K 352K 1000 600 713
FPGA07 0.7 350K 355K 1000 600 716
FPGA08 0.7 500K 216K 600 500 725
FPGA09 0.7 500K 366K 1000 600 877
FPGA10 0.6 350K 600K 1000 600 961
FPGA11 0.7 480K 363K 1000 400 851
FPGA12 0.6 500K 602K 600 500 1111

Average 0.625 327.5K 291K 675 450 626.5

1 200 400 600 800 1000
Routing Iterations

0

200

400

600

800

1000

1200

1400

O
ve

ru
se

d
N

od
es

 (
K
)

3 4 5 6 7 8 9 10 11
0

20

40

60

80

100

120

Constrained setting
Unconstrained setting

Fig. 3: Comparing the drop of overused nodes in the con-
strained and unconstrained setting for benchmark FPGA09.
The inset zooms in on iterations three to 11.

200 400 600 800 1000
Routing Iterations

500

1000

1500

2000

2500

O
ve

ru
se

d
N

od
es

Fig. 4: Overused nodes saturating after 200 iterations in the
constrained setting for benchmark FPGA09.

the end of the first iteration) with fewer overused nodes than
the unconstrained one, the latter resolves congestion faster. In
addition, the overused nodes also saturate after some iterations
in the constrained setting, as shown in Fig. 4, indicating that
routing hits a wall that prevents further progress. This can be
seen in Table II, by comparing the number of overused nodes
at the mid and the 1000th iteration.

The failure of PathFinder to find a solution when it is
present, and that too in a reduced search space, where faster
convergence is expected, contradicts intuitive expectations.

VI. TUNING DOES NOT HELP

A standard approach to resolving routing convergence issues
is to tune the router’s parameters [9]; we present a thorough
analysis of the impact of changing the values of various
router parameters in Section VI-B. However, one of the major
benefits of constraining the search space in which the route
trees are constructed is that it allows us to inspect failures,
which is what we do first. We reiterate that the constrained
routing problems are designed to ensure the existence of a
legal routing solution. Hence, there is no need to relax the
constraints, which would be somewhat similar to progressively
increasing the bounding box within which a net is allowed
to explore the routing resources [12] or adding new routing
resources as is commonly done in the FPGA design phase.
Furthermore, doing so would only hide the inherent limitations
of PathFinder, and our main goal is precisely to expose them.

146

TABLE II: The total iterations to route in the constrained setting are compared to the standard setting, where all benchmarks
converge. Overused nodes at the end of the middle and final iterations are noted for the constrained setting, with and without
multiple random sink shuffles (Section VIII). The Min column lists the lowest overused nodes reached across all routing
iterations. Benchmarks requiring 1000 iterations indicate convergence failure. With multiple random sink shuffles, routing
improves, with five benchmarks converging and others reaching single-digit overused nodes.

Benchmark

Standard
setting

Constrained setting
Constrained setting with

multiple random sink shuffles
Total

iterations
Overused nodes Total

iterations
Overused nodes Total

iterationsMid iter Last iter Min Mid iter Last iter Min
FPGA01 3 3 0 0 61 29 0 0 30
FPGA02 3 7 5 2 1000 35 0 0 79
FPGA03 4 48 18 6 1000 10 0 0 229
FPGA04 13 118 88 65 1000 18 12 3 1000
FPGA05 108 268 216 108 1000 36 7 3 1000
FPGA06 16 27 17 9 1000 39 0 0 210
FPGA07 46 446 295 168 1000 7 16 1 1000
FPGA08 9 451 412 245 1000 29 15 5 1000
FPGA09 47 473 298 158 1000 35 6 3 1000
FPGA10 24 88 92 17 1000 3 0 0 806
FPGA11 80 420 300 165 1000 44 11 3 1000
FPGA12 42 129 209 40 1000 10 1 1 1000

A. Enforcing Strict Node Hopping Sequence

A deeper analysis shows that some routed connections, even
within the constrained region, do not follow the exact node
sequence of their predefined coarsened paths. In particular,
this may happen when two nonadjacent nodes of a predefined
path have an edge between them in the routing graph G. Such
edges can result in connections bypassing some intermediate
nodes while routing and, in doing so, deviating from their
predefined paths. Fig. 2c illustrates one such case.

To avoid nets bypassing coarse nodes and deviating from
their predefined paths, we introduce a mechanism to enforce
the node hopping sequence determined by the coarsened
predefined path. For any node v ∈ V , we define hop(n, tni , v)
for a net n and its target tni . The function hop(n, tni , v) returns
the distance, measured in coarse edges, between the source sn

and the coarse node C(v) (illustrated in Fig. 6a). When a node
is popped from the heap, only its child nodes corresponding
to the next coarse node in the predefined path are pushed. To
implement this mechanism, we use the following equation,

hop(n, ti, u) = hop(n, ti, v) + 1, (2)

where v is the popped node, and u ∈ V is the pushed node.
Node u is pushed onto the heap only if it satisfies Eq. 2. This
mechanism significantly reduces the number of overused nodes
after 1000 routing iterations: by 57.8% on average. However,
only the smallest benchmark (FPGA01) converges.

B. Tuning PathFinder Parameters

After fixing the node hopping sequence, we employed the
standard strategy to address convergence issues: PathFinder
tuning. We tune parameters that solely focus on resolving
congestion. VTR’s router AIR [12] reroutes only congested
net sub-trees to reduce computational effort; by default, AIR
completely rips up nets if their fanout is below 16. As we
had already significantly reduced the path search space, we
ran the router in high-effort mode to reduce congestion by

5 6 7 8 9 10 11 12
Routing Iterations

20

40

60

80

100

120

140

Ov
er

us
ed

 N
od

es
 (K

)

Constrained setting w/o node hopping sequence
Constrained setting with node hopping sequence (s1)
s1, rip up congested nets with fanout < 32 (s2)
s2, present cost increasing exponentially

Fig. 5: Almost no improvement across various PathFinder
configurations for benchmark FPGA09. The configurations are
labeled as si (i = 1, 2). What follows si is the parameter that
changed in the configuration of si.

increasing this threshold to 32. The average minimum number
of overused nodes decreased by 10% compared to completely
ripping up nets with fanout below 16. However, no new
benchmarks converged.

We also experimented with exponential pres fac increments
(initial pres fac = 0.5 and mult pres fac =1.3), as done
by default in VTR, instead of a fixed value of five. We
combined it with completely ripping up nets with fanout
below 32, as this slightly improved the overused nodes at the
end of 1000 iterations. This configuration only enabled the
FPGA01 benchmark to converge after six additional iterations.
In addition, the average minimum number of overused nodes
increased by 58.7% compared to completely ripping up nets
with fanout below 32 and fixed pres fac. Fig. 5 shows that
no significant improvements arose from various PathFinder
configurations. However, we determine that the best setting for
routing in the constrained regions is to enforce node hopping
sequence, rip up nets with fanout below 32, and keep a fixed
pres fac of five.

147

VII. WHERE IS THE PROBLEM?
Before we describe the main problem, we define three

metrics for any arbitrary coarse node v′ ∈ Vc: ld(v′), ldinit(v′),
cap(v′). Here, ld(v′) represents the load of v′, corresponding to
the number of nodes from G within v′ that are used by at least
one net, as illustrated in Fig. 6. If more nets passed through
the coarse node, then its load would increase accordingly.
Similarly, ldinit(v′) corresponds to the number of nodes from
G within v′ that were used by at least one net in the legal
routing solution from which the constrained routing paths were
constructed (Fig. 6a). Finally, cap(v′) is the capacity of v′,
defined as the number of nodes from G that exist within v′.

A. Problem Identification

Each coarse node v′ in a constrained region constructed
from a legal routing solution initially satisfies the following:

ldinit(v
′) ≤ cap(v′). (3)

During routing along the constrained regions, we observe that
for some coarse nodes, the value of ld() could increase above
ldinit(). This occurs because the connections of a net end up
using more nodes within a coarse node than in the legal
routing solution. For example, if in the legal solution, multiple
connections of a net used only one node within a coarse node,
but during routing along the constrained path, the connections
branched somewhere higher up in the partial route tree, the
net will use multiple nodes within this coarse node, driving
up its ld(). The described behavior can be seen in Fig. 6b.

Due to branch point movement, a coarse node v′ could be
in three different states depending on ld(v′): 1 initial load
state, where ld(v′) is the same as ldinit(v′) (see Eq. 4); 2 load
increase state, where ld(v′) increases above ldinit(v′) but is less
than or equal to cap(v′) (see Eq. 5); and 3 overload state,
where ld(v′) increases beyond cap(v′) (see Eq. 6).

ldinit(v'2)=1

hop=1

hop=2

hop=3

tn1 tn2

sn

(a)

tn1 tn2

sn

ld(v'2)=2

(b)

Fig. 6: Illustration of load increase due to branch point move-
ment. All available paths from the source of a net n to its two
targets are shown within the constrained routing region. Small
circles depict nodes from G while the rounded rectangles
depict coarse nodes from Gc, each having a capacity of four.
The original route tree used to construct the constrained paths
is shown in subfigure (a), whereas a route tree of the same
net during routing in the constrained setting is depicted in
subfigure (b). The load of v′2 increased by one because the
connection to target tn2 branched from the path taken by the
previously routed sink tn1 at a node closer to the root.

100 200 300 400 500 600 700 800 900 1000
Routing Iterations

0

100

200

300

400

500

600

700

Ov
er

us
ed

 N
od

es

Overused nodes belonging to coarse nodes in initial load state
Overused nodes belonging to coarse nodes in load increase state
Overused nodes belonging to coarse nodes in overload state

Fig. 7: Overused nodes in G across routing iterations for
FPGA09, categorized based on the state of the coarse nodes
they belong to (initial load, load increase, or overload).

Initial load state: ld(v′) = ldinit(v
′), (4)

Load increase state: ldinit(v
′) < ld(v′) ≤ cap(v′), (5)

Overload state: ld(v′) > cap(v′). (6)
For benchmark FPGA09, Fig. 7 shows the overused (con-

gested) nodes in G across routing iterations, categorized by
the state of the coarse node to which they belong. We can
see that some overused nodes belong to coarse nodes in the
overload state, which creates a routing bottleneck that cannot
be resolved without a decrease in load.

On the other hand, one could expect that after some routing
iterations, there would be no more overused nodes within the
coarse nodes in initial load state, as their disappearance does
not require any load reduction. However, those nodes also
remained overused until the last iteration. Moreover, even after
the final iteration, they were still the most numerous. This
suggests that the increase in the load of the coarse nodes
may not be the sole contributing factor to the convergence
problem. Nevertheless, it is also possible that the overused
nodes belonging to the initial load state category of coarse
nodes are a consequence of congestion originating in those
coarse nodes in increase load state and the overload state.

To determine whether the load increase is the sole cause of
the problem for the benchmark under consideration, we design
an experiment where we sample the nets for which the branch
point moves in the first two iterations. Then, we extract the
route trees of these nets from the legal routing solution that
was used to construct the constrained routing region. To isolate
the effect of routing these nets—15% of all nets of FPGA09—
we use the extracted legal route trees and lock their routing
resources, rather than routing them from scratch along the
constrained path. After performing this importing and locking,
the remaining nets of FPGA09 were successfully routed in 80
iterations. This finding indicates that the nets for which the
branch point moves result in convergence failure.

VIII. HOW TO FIX THE LOAD INCREASE?

The fundamental problem with branch node movement is
that the route tree of a net ends up using more nodes than it
did in the legal routing solution from which the constrained

148

paths were obtained. An inefficient route tree is constructed
primarily because PathFinder routes the connections sequen-
tially in the current paradigm. As a result, the connections that
route initially are oblivious of the path that would be better
suited for connections that route later.

To break this dependence on sink order and enable con-
struction of more optimized route trees, we propose a straight-
forward yet effective solution: routing each net with multiple
permutations of its sink order—ideally, all of them. Each
permutation of sinks of the given net results in a different
route tree, out of which we select the one with the fewest
nodes, before proceeding to route the following net. The
superexponential growth of the number of permutations with
respect to net fanout makes exhaustive exploration of all sink
permutations infeasible for most nets; however, for those with
five or fewer sinks, it is feasible.

To avoid the scalability issue with sink permutation, we ap-
proximate the method by randomly shuffling the sinks multiple
times to get a subset of permutations (Line 3 in Algorithm 3).
Then, out of the thus constructed trees, we select the one with
the fewest nodes (see Line 11 in Algorithm 3). We break
ties using the minimal total congestion cost, calculated by
summing the individual congestion cost of the nodes (Eq. 1a).

Algorithm 3 PathFinder with Multiple Random Sink Shuffles
1: for iter in max_iterations do
2: for net in nets do
3: multiple_sink_orders ← GENERATERANDOMSHUFFLES(sinks)
4: map = {}
5: for sink_order in multiple_sink_orders do
6: tree ← ROUTENET(sink_order)
7: total_nodes ← TOTALNODESINTREE(tree)
8: congestion_cost ← TREECOST(tree)
9: map[total_nodes, congestion_cost] = tree

10: end for
11: tree ← TREESELECTION(map)
12: end for
13: for net in nets do
14: RIPUPCONGESTEDCONNECTIONS(net)
15: end for
16: end for

Table II shows the convergence improvement originating
from routing with multiple random sink shuffles. With 300
shuffles for the first nine iterations and 48 for the later ones
(determined empirically to keep runtime from exploding), we
observed that six benchmarks converged. For others, the min-
imum number of overused nodes dropped to a single digit—a
significant reduction from routing with a single default sink
order. To push the other benchmarks to convergence, we could
increase the number of sink shuffles; however, even with a
high number of random shuffles, landing on a sink order that
minimizes the route tree size is still not guaranteed, given the
probabilistic nature of the random shuffle.

IX. APPLICATION IN STANDARD SETTING

Having identified an inefficiency in PathFinder and proposed
a solution, we next test the impact of this new routing
paradigm in the standard setting, where the search space of
nets is unconstrained. The results of applying 48 random shuf-
fles to each net and picking the smallest encountered tree are in

Table III. As we can see, minimizing tree size can significantly
improve routing quality. In particular, after using sink shuffling
to optimize the tree size, the total wirelength dropped by 6.4%
on average, while the number of segments used by the nets
decreased by 7.9%. We note that 48 shuffles cannot cover
all possibilities for nets with fanout over four. Hence, it is
likely that significantly better optimization can be obtained
by replacing the tree construction algorithm altogether and
directly searching for minimum trees. Nevertheless, shuffling
sinks to generate varied route trees and selecting the best
one is a general approach that can optimize metrics beyond
wirelength and congestion, such as timing and power. A less
naive implementation could better explore permutations. We
turn to this next.

1) Parallelization Potential: Given that our primary goal
in this work was to understand the limitations of PathFinder
and how they could be overcome, we opted for the most
straightforward implementation of the sink-permutation algo-
rithm, which is sequential. Of course, increasing the runtime of
the routing process severalfold would be prohibitive; therefore,
it is essential to note that exploring different permutations
of sinks for a particular net creates completely independent
pathfinding problems and can hence be fully parallelized.
Since it has been shown that parallelizing PathFinder across
different nets results in limited runtime reductions on large
and complex circuits [6], we believe that employing the
available hardware threads—up to 192 on the state-of-the-
art CPUs [17]—for exploring different sink permutations is
a good way to leverage modern highly-parallel hardware to
speed up routing. The primary way in which routing can
be sped up by exploring different sink permutations is that
choosing the smallest encountered tree leads to a quicker
reduction of congestion, which in turn results in fewer con-
nection reroutes, as shown in Table III.

With the most straightforward approach, a net can be
considered routed only after the slowest thread completes the
search for its tree. To model the runtime that would be obtained
in this scenario, we collect the number of heap operations
required to get the tree for the given net. Then, summing the
largest of these numbers across all nets and iterations gives us
the total runtime that would be required if one were always
to wait for the slowest thread to finish. This is reported in
the middle section of Table III. We believe that investing 30%
more runtime to obtain significant wirelength reductions is
a very good trade-off, as it could, for instance, enable the
utilization of FPGAs with fewer routing resources.

Moreover, by adopting some filters, permutations that are
not promising can be terminated early without much loss to
the quality of the results. Finally, if routing is considered not
in isolation but as part of the entire CAD flow, convergence
and timing closure with the given placement, chances of which
are boosted by the appropriate minimization of the route trees,
removes the need to revisit placement or apply any manual
modifications, thus potentially greatly reducing the overall
runtime on large and complex circuits. This, however, goes
beyond the scope of the present work.

149

TABLE III: Comparing routing in the standard setting with single sink order and multiple sink orders generated by random
sink shuffling. In the latter case, trees are selected using two different selection strategies: the minimum number of nodes
and the minimum number of heap pushes. CR is the total number of connections routed, Avg. seg. is the number of average
segments used per net, TWL is the total wirelength, whereas pops and pushes are the corresponding heap operations. The
numbers adjacent to arrows are normalized with respect to routing in the standard setting with single sink order.

Benchmark
Standard setting with single sink order

Standard setting with multiple random sink shuffle
Tree with minimum number of nodes Tree with minimum heap pushes

CR (K) Avg. seg. TWL Pops (K) Pushes (K) CR Avg. seg. TWL Pops Pushes CR Avg. seg. TWL Pops Pushes
FPGA01 418 3.2 668 31,806 118,526 1.6% ↓ 7.0% ↓ 6.8% ↓ 1.1× ↑ 1.2× ↑ 0.4% ↓ 3.3% ↓ 3.1% ↓ 0.9× ↓ 0.8× ↓
FPGA02 743 3.4 1,167 55,345 210,177 1.5% ↓ 7.6% ↓ 6.8% ↓ 1.1× ↑ 1.2× ↑ 0.4% ↓ 3.8% ↓ 3.5% ↓ 0.9× ↓ 0.8× ↓
FPGA03 2,149 4.6 5,222 201,023 928,448 1.2% ↓ 7.3% ↓ 5.6% ↓ 1.2× ↑ 1.3× ↑ 0.3% ↓ 3.4% ↓ 2.5% ↓ 0.9× ↓ 0.8× ↓
FPGA04 2,270 6.3 8,529 260,935 1,453,301 2.5% ↓ 8.6% ↓ 6.4% ↓ 1.3× ↑ 1.4× ↑ 1.4% ↓ 3.8% ↓ 2.5% ↓ 0.8× ↓ 0.7× ↓
FPGA05 6,850 9.7 14,810 57,214,347 189,342,499 31.6% ↓ 9.0% ↓ 7.4% ↓ 1.2× ↑ 1.2× ↑ 23.6% ↓ 3.4% ↓ 3.3% ↓ 0.3× ↓ 0.3× ↓
FPGA06 3,297 4.9 9,563 340,699 1,683,991 1.7% ↓ 7.0% ↓ 5.4% ↓ 1.3× ↑ 1.4× ↑ 0.7% ↓ 3.0% ↓ 1.9% ↓ 0.8× ↓ 0.8× ↓
FPGA07 4,077 6.5 15,051 944,445 6,074,410 7.4% ↓ 7.9% ↓ 6.0% ↓ 1.3× ↑ 1.3× ↑ 4.3% ↓ 3.1% ↓ 2.1% ↓ 0.5× ↓ 0.5× ↓
FPGA08 3,844 5.6 12,499 367,447 1,951,403 1.5% ↓ 9.2% ↓ 6.5% ↓ 1.3× ↑ 1.4× ↑ 0.6% ↓ 4.1% ↓ 2.8% ↓ 0.8× ↓ 0.7× ↓
FPGA09 5,384 6.4 18,409 952,470 6,545,285 12.0% ↓ 10.1% ↓ 8.1% ↓ 1.0× ↑ 1.1× ↑ 7.8% ↓ 4.3% ↓ 3.5% ↓ 0.5× ↓ 0.4× ↓
FPGA10 3,631 4.0 11,403 387,805 2,011,013 2.7% ↓ 5.5% ↓ 4.5% ↓ 1.1× ↑ 1.2× ↑ 1.4% ↓ 2.4% ↓ 1.9% ↓ 0.8× ↓ 0.8× ↓
FPGA11 6,220 5.8 15,625 5,995,218 30,288,428 14.0% ↓ 9.3% ↓ 7.5% ↓ 1.0× ↑ 1.0× ↑ 10.5% ↓ 3.9% ↓ 2.9% ↓ 0.3× ↓ 0.3× ↓
FPGA12 4,493 3.3 10,196 387,295 1,871,566 2.7% ↓ 7.6% ↓ 6.3% ↓ 1.2× ↑ 1.3× ↑ 1.3% ↓ 3.4% ↓ 2.4% ↓ 0.8× ↓ 0.7× ↓
Geomean 2,855 5.0 7,486 533,840 2,598,553 3.6% ↓ 7.9% ↓ 6.4% ↓ 1.2× ↑ 1.3× ↑ 1.6% ↓ 3.5% ↓ 2.6% ↓ 0.6× ↓ 0.6× ↓

2) Early Stopping: One easy way to apply early termination
is to choose the first tree found by any thread. While this
does not guarantee selecting the smallest explored tree, the
heuristic is not entirely arbitrary. Assuming A* exhibits the
same effective branching factor for all permutations, fewer
heap operations should lead to shorter paths forming the tree.
The right section of Table III shows the case where we always
select the tree with the fewest heap pushes, which would
roughly correspond to the first found. This reduces the total
number of heap operations by 40% on average, while still
maintaining tangible improvements to wirelength, although
smaller than when the smallest trees are selected. Thus, there
is ample room to trade off runtime and quality of results by
choosing different trees, which is something we plan to explore
more thoroughly in future work.

X. RELATED WORK

Over the years, various PathFinder enhancements have
been proposed to improve its runtime or timing optimization.
However, to our knowledge, only two works have specifically
highlighted inherent inefficiencies of PathFinder in the context
of FPGA routing: Rubin and DeHon identified significant
variations in critical path delay caused by small perturbations
in the net routing order, demonstrating an inherent sensitivity
of the algorithm to it [18], whereas Zha and Li showed that
keeping the present congestion factor constant across routing
iterations reduces these variations [15].

CRoute [19] and RWRoute [10] investigated cost biasing
to encourage node sharing among net connections. Yet, their
work lacks a detailed analysis of minimizing tree size or
transitioning from a greedy connection to holistic net routing.

Our work parallels PEKO [20], which revealed suboptimali-
ties of ASIC placers of the time, by carefully constructing cir-
cuits with known optimum placements. Similarly, we present
a framework to analyze PathFinder that leverages constrained
routing problems with a known legal routing. Unlike PEKO,

we extract these problems from real-world circuits instead of
generating specific synthetic benchmarks.

Perhaps the most thorough theoretical analysis of
PathFinder’s congestion negotiation mechanism was given by
Roy and Markov [21] in the context of ASIC global routing.
By drawing parallels between congestion negotiation and
Lagrangian relaxation, they proposed a more general formu-
lation that allows assigning different weights to different nets.
They also noted that optimal precomputed Steiner-minimal
trees that are oblivious to congestion are inferior to the
approximate Steiner-minimal trees computed by PathFinder
through connection-based routing with node sharing, which
take congestion into account. In this work, we demonstrate
that while congestion awareness is essential, it is not sufficient,
as poor tree minimization can still prevent the router from
converging on a legal solution when routing resources are
limited. The issue is much more important in FPGAs because
to avoid such failures, architects need to add expensive routing
resources not only where the particular user circuit requires
them, but uniformly across the chip.

XI. CONCLUSIONS

This paper aims to highlight inefficiencies in PathFinder that
have persisted for nearly three decades. We propose shifting
the paradigm from greedily routing individual connections
to constructing efficient route trees holistically. Our results,
obtained through a simple algorithm, demonstrate that this new
routing paradigm can reduce wirelength and heap operations
by employing tailored tree selection strategies. Our algorithm
appears simple, yet it is effective and generalizable to various
user requirements by adjusting the tree-selection strategy,
where each candidate tree can be processed by tree analysis
algorithms of arbitrary complexity. These findings open up
avenues for further research to enhance PathFinder, thereby
bridging the gap between its current capabilities and its full
potential.

150

REFERENCES

[1] B. Gaide, D. Gaitonde, C. Ravishankar, and T. Bauer, “Xilinx adaptive
compute acceleration platform: VersalTM architecture,” in Proceedings of
the 27th ACM/SIGDA International Symposium on Field Programmable
Gate Arrays. Seaside, CA, USA: ACM, Feb. 2019, pp. 84–93.

[2] J. Chromczak, M. Wheeler, C. Chiasson, D. How, M. Langhammer,
T. Vanderhoek, G. Zgheib, and I. Ganusov, “Architectural enhancements
in Intel® Agilex™ FPGAs,” in Proceedings of the 28th ACM/SIGDA
International Symposium on Field Programmable Gate Arrays. Seaside,
CA, USA: ACM, Feb. 2020, pp. 140–49.

[3] S. Hong, S. Moon, J. Kim, S. Lee, M. Kim, D. Lee, and J.-Y.
Kim, “DFX: A low-latency multi-FPGA appliance for accelerating
transformer-based text generation,” in 55th IEEE/ACM International
Symposium on Microarchitecture. Cupertino, CA, USA: IEEE, Oct.
2022, pp. 616–30.

[4] L. McMurchie and C. Ebeling, “PathFinder: A negotiation-based
performance-driven router for FPGAs,” in Proceedings of the 3rd
ACM/SIGDA International Symposium on Field Programmable Gate
Arrays. Napa Valley, CA, USA: ACM, Feb. 1995, pp. 111–17.

[5] K. E. Murray, O. Petelin, S. Zhong, J. M. Wang, M. Eldafrawy, J.-P.
Legault, E. Sha, A. G. Graham, J. Wu, M. J. Walker, H. Zeng, P. Patros,
J. Luu, K. B. Kent, and V. Betz, “VTR 8: High-performance CAD
and customizable FPGA architecture modelling,” ACM Transactions on
Reconfigurable Technology and Systems, vol. 13, no. 2, pp. 1–60, May
2020.

[6] S. Shrivastava, S. Nikolić, C. Ravishankar, D. Gaitonde, and M. Sto-
jilović, “IIBLAST: Speeding up commercial FPGA routing by de-
coupling and mitigating the intra-CLB bottleneck,” in Proceedings of
the 42nd International Conference on Computer-Aided Design. San
Francisco, CA, USA: IEEE, Oct. 2023, pp. 1–9.

[7] E. Vansteenkiste, A. Kaviani, and H. Fraisse, “Analyzing the divide
between FPGA academic and commercial results,” in Proceedings of
the 2015 International Conference on Field Programmable Technology.
Queenstown, New Zealand: IEEE, Jan. 2015, pp. 96–103.

[8] S. Kaptanoglu, “PathFinder: A negotiation-based performance-driven
router for FPGAs,” FPGA and Reconfigurable Computing Hall-of-Fame
Endorsement, 2012.

[9] N. Kapre, H. Ng, K. Teo, and J. Naude, “Intime: A machine learning
approach for efficient selection of FPGA CAD tool parameters,” in
Proceedings of the 23rd ACM/SIGDA International Symposium on Field
Programmable Gate Arrays. Monterey, California, USA: ACM, Feb.
2015, pp. 23–26.

[10] Y. Zhou, P. Maidee, C. Lavin, A. Kaviani, and D. Stroobandt,
“RWRoute: An open-source timing-driven router for commercial FP-
GAs,” ACM Transactions on Reconfigurable Technology and Systems,
vol. 15, no. 1, pp. 1–27, 2021.

[11] A. Mohaghegh and V. Betz, “Tear down the wall: Unified and efficient
intra- and inter-cluster routing for FPGAs,” in Proceedings of the 33rd
International Conference on Field Programmable Logic and Applica-
tions. Gothenburg, Sweden: IEEE, Apr. 2023, pp. 130–36.

[12] K. E. Murray, S. Zhong, and V. Betz, “AIR: A fast but lazy timing-
driven FPGA router,” in Proceedings of the 25th Asia and South Pacific
Design Automation Conference. Beijing, China: IEEE, Jan. 2020, pp.
338–44.

[13] International Symposium on Physical Design (ISPD), “Routability-
driven FPGA placement contest,” https://www.ispd.cc/contests/16/
ispd2016 contest.html, 2016, retrieved Aug. 2022.

[14] W. Li, S. Dhar, and D. Z. Pan, “Placements for ISPD16 benchmarks,”
http://wuxili.net/project/utplacef/, 2016, retrieved Sep. 2022.

[15] Y. Zha and J. Li, “Revisiting PathFinder routing algorithm,” in Pro-
ceedings of the 30th ACM/SIGDA International Symposium on Field
Programmable Gate Arrays. Seaside, CA, USA: ACM, Feb. 2022, pp.
24–34.

[16] S. Shrivastava, S. Nikolić, S. Tanaka, C. Ravishankar, D. Gaitonde, and
M. Stojilović, “Guaranteed yet hard to find—Artifacts,” Available on:
https://doi.org/10.5281/zenodo.15024666, 2025.

[17] AMD, “AMD Ryzen™ Threadripper™ processors,” https://www.
amd.com/en/products/processors/workstations/ryzen-threadripper.html#
specifications, 2025, retrieved Jan. 2025.

[18] R. Y. Rubin and A. M. DeHon, “Timing-driven PathFinder pathol-
ogy and remediation: Quantifying and reducing delay noise in VPR-
PathFinder,” in Proceedings of the 19th ACM/SIGDA International
Symposium on Field Programmable Gate Arrays. Monterey, California,
USA: ACM, Feb. 2011, pp. 173–76.

[19] D. Vercruyce, E. Vansteenkiste, and D. Stroobandt, “CRoute: A fast
high-quality timing-driven connection-based FPGA router,” in Proceed-
ings of 2019 IEEE 27th Annual International Symposium on Field-
Programmable Custom Computing Machines. San Diego, CA, USA:
IEEE, Apr. 2019, pp. 53–60.

[20] C.-C. Chang, J. Cong, and M. Xie, “Optimality and scalability study
of existing placement algorithms,” in Proceedings of the 2003 Asia and
South Pacific Design Automation Conference. Kitakyushu, Japan: ACM,
Jan. 2003, pp. 621–27.

[21] J. A. Roy and I. L. Markov, “High-performance routing at the nanometer
scale,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 27, no. 6, pp. 1066–77, May 2008.

151

