
Vol:.(1234567890)

Journal of Hardware and Systems Security (2023) 7:72–99
https://doi.org/10.1007/s41635-023-00135-1

1 3

Instruction‑Level Power Side‑Channel Leakage Evaluation of Soft‑Core
CPUs on Shared FPGAs

Ognjen Glamočanin1 · Shashwat Shrivastava1 · Jinwei Yao1 · Nour Ardo1 · Mathias Payer1 · Mirjana Stojilović1

Received: 14 January 2023 / Accepted: 26 July 2023 / Published online: 4 October 2023
© The Author(s) 2023

Abstract
Side-channel disassembly attacks recover CPU instructions from power or electromagnetic side-channel traces measured
during code execution. These attacks typically rely on physical access, proximity to the victim device, and high sampling
rate measuring instruments. In this work, however, we analyze the CPU instruction-level power side-channel leakage in an
environment that lacks physical access or expensive measuring equipment. We show that instruction leakage is present even in
a multitenant FPGA scenario, where the victim uses a soft-core CPU, and the adversary deploys on-chip voltage-fluctuation
sensors. Unlike previous remote power side-channel attacks, which either require a considerable number of victim traces
or attack large victim circuits such as machine learning accelerators, we take an evaluator’s point of view and provide an
analysis of the instruction-level power side-channel leakage of a small open-source RISC-V soft processor core. To inves-
tigate whether the power side-channel traces leak secrets, we profile the victim device and implement various instruction
opcode classifiers based on both classical machine learning algorithms used in disassembly attacks, and novel, deep learning
approaches. We explore how parameters such as placement, trace averaging, profiling templates, and different FPGA families
(including a cloud-scale FPGA) impact the classification accuracy. Despite the limited leakage of the soft-core CPU victim
and a reduced accuracy and sampling rate of on-chip sensors, we show that in a worst-case scenario for the evaluator, i.e.,
an attacker breaching physical separation, we can identify the opcode of executed instructions with an average accuracy as
high as 86.46%. Our analysis shows that determining the executed instruction type is not a classification bottleneck, while
leakages between instructions of the same type can be challenging for deep learning models to distinguish. We also show that
the instruction-level leakage is significantly reduced in a cloud-scale FPGA scenario with higher soft-core CPU frequencies.
Nevertheless, our results show that even small circuits, such as soft-core CPUs, leak potentially exploitable information
through on-chip power side channels, and users should deploy mitigation techniques against disassembly attacks to protect
their proprietary code and data.

Keywords  FPGA · Multitenancy · CPU instruction identification · Power side-channel attack

1  Introduction

Due to the end of Moore’s law and the breakdown of Den-
nard’s scaling, datacenters are transitioning from homogene-
ous and processor-dominated systems towards heterogeneous
architectures. As a result, today’s datacenters feature not only
central processing units (CPUs), but also graphics processing

units (GPUs) and special-purpose integrated circuits such as
field-programmable gate arrays (FPGAs). FPGAs reached
wide deployment in datacenters thanks to their highly paral-
lel architecture, programmability, and energy efficiency [1,
2]. Even though FPGA vendors offer FPGA-based system-
on-chips (SoCs) with hardened CPUs [3, 4], cloud providers
are exclusively integrating regular FPGAs in their servers
because servers are already abundant in high-end server-
grade CPUs. Amazon EC2 F1 [1], Azure [2], Baidu [5],
and Tencent [6] deploy AMD Virtex or Kintex Ultrascale+
FPGAs, while Alibaba deploys Intel Arria 10 and Agilex
FPGAs [7].

In the FPGA-accelerated cloud, highly-parallel tasks are
accelerated on FPGAs. At the same time, developers rely on

 *	 Ognjen Glamočanin
	 ognjen.glamocanin@epfl.ch

 *	 Mirjana Stojilović
	 mirjana.stojilovic@epfl.ch

1	 School of Computer and Communication Sciences, EPFL,
Route Cantonale, Lausanne 1015, Vaud, Switzerland

http://crossmark.crossref.org/dialog/?doi=10.1007/s41635-023-00135-1&domain=pdf

73Journal of Hardware and Systems Security (2023) 7:72–99	

host CPUs for general computation, particularly nonitera-
tive and user event-dependent control algorithms, which are
significantly easier to implement and maintain in software
than in hardware. However, the FPGA-CPU communication
incurs high latency, especially for short data transfers [8].
If such delays are of no concern, then the control software
can be deployed on a cloud CPU instance; yet, only a lim-
ited range of FPGA applications—usually data movement
ones—can afford the resulting communication latency.
Therefore, in the case of latency-critical control algorithms,
system designers resort to using soft-core CPUs as real-time
co-processors (e.g., Microblaze [9], Nios [10], PicoRV [11]),
which allow tight and customizable integration with FPGA
accelerators, and short communication latencies.

Recent efforts focus on extending the multitenancy and
resource virtualization from CPUs to FPGAs, to improve the
efficiency of datacenter resource provisioning. A specific
research focus is achieving spatial or temporal multiplexing
of FPGA resources [12–14]. The challenges are numerous,
such as partitioning the FPGA resources among multiple
users, providing communication protocols between the host
virtual machine and the accelerators, and ensuring proper
physical and logical isolation between the tenants [15].

Unfortunately, FPGA multitenancy introduces security
threats that cannot be mediated by physical or logical isola-
tion between tenants. The reason is the shared power delivery
network (PDN), which instigates power side-channel attacks,
covert communication [16, 17], and denial-of-service and
fault attacks [18, 19]. An attacker does not require physical
access to the board, as the fine logic and wiring granularity
of FPGAs enables malicious users to craft almost arbitrary
hardware, which includes implementing on-chip sensors for
measuring the shared power supply voltage fluctuations [20].
Several remote power-analysis attacks have already been
demonstrated: a simple-power analysis (SPA) attack on RSA
exponentiation [21], correlation power analysis (CPA) attacks
against AES (requiring a large number of victim power
traces) [22–24], and reverse engineering attacks on neural
network accelerators (which occupy a significant portion of
the FPGA resources) [25–28].

For an FPGA user, secret information is not limited to
their bitstream, the cryptographic key, or neural network
accelerator parameters and architecture. If their design
contains a soft-core CPU, the code being executed can be
proprietary or contain secrets. If an attacker, by observing
power side-channel traces during CPU code execution, can
determine which instructions are being executed, the con-
fidentiality of the code will be compromised. In embedded
applications and smart cards, where adversaries have physi-
cal access to the target device to measure power and elec-
tromagnetic side-channel leakage, attacks that aim at code
recovery are termed side-channel disassembly attacks [29,
30]. Unlike statistical-based power analysis attacks such as

CPA, side-channel disassembly attacks are profiling attacks
and assume the attacker can record a limited number of vic-
tim execution traces.

Our work takes an evaluator’s point of view: we explore to
which extent soft-core CPUs leak instruction-level informa-
tion through the remote power side channel, in cases when
an evaluator (or a potential attacker) has no physical access
to the device but can deploy on-chip voltage-drop sensors.
Unlike traditional side-channel disassembly attacks—where
the CPU runs at frequencies orders of magnitude lower
than the sampling rate of the oscilloscope—sensors used in
remote power analysis attacks have sampling frequencies in
the same operating range as soft-core CPUs. Our work ana-
lyzes if and under which conditions soft-core CPU instruc-
tions contain power side-channel leakage and incentivizes
the use of protection methods in multitenant FPGAs. As our
leakage evaluation targets, we choose two RISC-V soft-core
CPUs using the 32-bit RISC-V base integer instruction set
architecture (RV32I), most suitable for lightweight real-time
co-processors [31].

To start, we record the side-channel traces correspond-
ing to the execution of every CPU instruction. Then, to
investigate whether the traces leak secrets, we train diverse
machine learning (ML) classifiers used in previous work and
also explore the use of novel deep learning (DL) classifiers
to improve the extraction of the power side-channel leak-
age. The results reveal that, despite the limited accuracy and
sampling rate of on-chip sensors compared to oscilloscopes
used in disassembly attacks with physical access, the limited
leakage compared to previous remote reverse-engineering
attacks, and the limited number of victim trace acquisitions
compared to statistical-based attacks, instruction-level leak-
ages still exist: we can determine the executed instructions
with average accuracy higher than 80%. These results call
for proper mitigations to limit power side-channel leakage
of soft-core CPUs in shared FPGAs.

We make the following contributions:

•	 To the best of our knowledge, we present the first analy-
sis of instruction-level leakage of soft-core CPUs in a
shared FPGA setting.

•	 While power side-channel traces recorded by an on-chip
FPGA sensor during the execution of one RISC-V soft-
core CPU instruction contain limited visually observ-
able leakage, we demonstrate that, in certain conditions,
advanced ML techniques can extract sufficient infor-
mation to identify the opcode of the executed instruc-
tions. The maximum average instruction accuracy we
achieve on the RV32I instruction set architecture (ISA)
is 86.46%.

•	 Besides evaluating previous side-channel disassembly
approaches, we explore new, DL-based instruction clas-
sifiers, and experimentally find that they are superior at

74	 Journal of Hardware and Systems Security (2023) 7:72–99

extracting leakage compared to common ML techniques
deployed in previous work, and should be used for future
side-channel security evaluations.

•	 We perform an extensive experimental analysis that
compares how different leakage evaluation scenarios,
such as the number and placement of sensors, number of
templates, and type of templates, affect the instruction-
level leakage. We also demonstrate our results on two
soft CPU cores and two different FPGA families. In addi-
tion to the leakage analysis of the RISC-Y [32] soft-core
CPU running at 80 MHz on the Sakura-X board [33], we
show results on a cloud-scale, AMD Alveo U200 data-
center accelerator card, using the compact PicoRV [11]
soft-core CPU, running at 320 MHz. With our on-chip
sensors running at 320 MHz, the side-channel traces have
only four sensor samples per CPU clock cycle on Sakura-
X, and only one sensor sample per CPU clock cycle on
Alveo U200; significantly lower than in traditional side-
channel disassembly attacks.

•	 We provide a detailed discussion of our experimental results
and their impact on soft-core CPU leakage evaluation,
which we use to motivate appropriate mitigation techniques.

Our work aims to provide a leakage evaluation methodology
for soft-core CPUs in remotely accessible scenarios and to
benefit future power side-channel disassembly attacks by
providing novel DL power trace classification techniques.
Therefore, we make all our FPGA designs, associated soft-
ware, and ML code openly available for the reproducibility
of the experiments and the results in this work [34].

2 � Background

Almost a decade ago, Microsoft pioneered the use of FPGAs
in cloud computing. Their Catapult project pilot of 1,632
FPGA-enabled datacenter servers demonstrated a dramatic
improvement in Bing search latency, launching the era of
FPGA-accelerated cloud computing [35]. Other cloud ser-
vice providers soon followed. Today, Amazon AWS, Azure,

Alibaba, Baidu, and Tencent offer their customers remote
access to datacenter FPGAs, to develop, test, and deploy
their custom hardware accelerators [1, 5–7].

To remote users, FPGAs are typically exposed through
a host CPU virtual machine interface and a shell-role use
model [15]. The shell is deployed by the cloud service pro-
viders and shares the FPGA logic with the users. In addition,
it implements platform-specific management tasks: PCIe,
direct memory access engine, DRAM controller, and debug-
ging interfaces. The FPGA region reserved for each user
is called a role, and users deploy their accelerators within
their role. The shell-role separation helps faster accelerator
deployment and ensures different privilege levels between
the cloud service providers and the external users.

In both academia and industry, increased efforts are
being made to extend multitenancy and resource virtualiza-
tion from CPUs to FPGAs, to enable better management
and use of available datacenter resources [12, 15, 36–46].
Multitenancy can be achieved through spatial and tempo-
ral multiplexing. Temporal multiplexing separates users in
time, ensuring that each tenant gets their own, exclusive
instance. In spatial multiplexing, FPGA roles are occupied
by potentially different tenants, and consequently, the cloud
service providers need to ensure security and privacy to all
of them [45, 47, 48].

Once the shell and the tenants share the FPGA die, they
also share the PDN illustrated in Fig. 1. On the printed cir-
cuit board (PCB) level, the PDN starts with the primary
voltage regulator. The power is then distributed through
several levels of voltage regulators if needed, and the power
and ground planes. Inside the FPGA, a PDN resembling
a dense mesh supplies power to all FPGA logic and rout-
ing resources. On all the levels—board, package, chip—the
PDN contains resistive, capacitive, and inductive compo-
nents, some of them intended and some parasitic, which
create a medium for voltage fluctuations in one FPGA role
to propagate to another. Gnad et al. were the first to demon-
strate that a malicious FPGA tenant can, through excessive
logic switching, draw too much current and, consequently,
reset the host FPGA [18]. Their findings temporarily put on

Package

Die

Package capacitor s

On-die capacitors

Power grid

VICTIM ADVERSARY

power pins

C4 bumps

ground pins

PCB
On-board capacitors

VDD power plan e

Ground plane

Voltage
Regulators

Fig. 1   Power delivery network coupling across the board, package, and the FPGA die

75Journal of Hardware and Systems Security (2023) 7:72–99	

hold the FPGA multitenancy in the cloud and pushed many
researchers to investigate new attack surfaces, threat models,
and countermeasures [49, 50].

One of such new attack surfaces called remote power
analysis attacks, was first demonstrated by Zhao and Suh
[21] and Schellenberg et al. [22]. Leveraging the fine granu-
larity of reconfigurable logic and routing in FPGAs allowed
the designing and implementing of circuits that sense on-
chip power supply voltage variations. Unlike traditional
power analysis attacks, which require physical access to the
victim to measure its power consumption with an oscillo-
scope [51], using on-chip sensor circuits made these attacks
remote, no longer requiring physical access to the device. An
example of such a sensing circuit is a simple ring oscillator
(RO), composed of an odd number of inverters connected
to form a closed chain. Its oscillation frequency depends on
the delays of the inverters and routing resources which, in
turn, depend on the power supply voltage. Hence, one can
also sense the voltage variations by measuring the RO fre-
quency. Another example is a delay-line sensor, also called
time-to-digital converter (TDC) [20], which we will discuss
in detail in Sect. 4. In a multitenant FPGA setting, an adver-
sary can use such sensors to collect the power side-channel
information leaked from a co-located tenant and use it to
infer secret information: indeed, on-chip sensors allowed
remote attacks on cryptographic circuits, ML accelerators,
and other circuits. We summarize the most relevant previous
work in Sect. 11.

3 � Threat Model

Research on the security of multitenant FPGAs follows
a well-established threat model of the fault and side-
channel attacks on remote shared FPGAs [19, 21, 23,

28, 49, 52–54]. The primary assumption is that at least
two users can remotely deploy their designs on the same
FPGA instance simultaneously. For security reasons,
these remote users are given control over dedicated partial
reconfiguration regions, which are logically and physically
isolated; thus, the attacker has no direct access or control
over the victim or the victim’s deployment. The adversary
can deploy voltage fluctuation sensors to record power
side-channel traces and send them over the network for
remote analysis.

In this work, we assume an evaluator’s point of view: we
evaluate the security of a victim that uses a soft processor
core in their shared FPGA platform, for example, to config-
ure and control the operation of an accelerator. This work
analyzes instruction-level leakage to assess if and under
which circumstances soft-core CPUs leak instruction infor-
mation through the power side channel in shared FPGAs,
with the goal of motivating the use of countermeasures.

When evaluating the side-channel security of a device, it
is a common practice to consider the worst-case estimates
(even if not practically achievable by an attacker), as they
quantify the limits of the leakage. For example, in the con-
text of cyber-physical devices, white-box power side-chan-
nel leakage evaluation methods leverage proprietary archi-
tectural information (unavailable to attackers) to build better
power models for power analysis attacks [55]. Removing the
plastic cover of a chip to record near-field EM emanations
is another example of a common practice in leakage evalu-
ations, even though attackers might not always be able to
remove the casing. Consequently, our experiments assume
and evaluate various scenarios: from worst-case (a breach of
physical and logical separation, no additional noise sources,
and averaging of traces) to more realistic scenarios, includ-
ing physical separation, no averaging, and noise from sur-
rounding instructions and the shell.

Voltage
sensor s

Trace buffe r

Voltage
sensor s

Trace buffe r

Power
side-channel

tr aces

TrainingProfiling

Attack Best fi t
classifier

Power
side-channel

tr aces

Libr ary of
classifiersSoftcore

CPU

Softcore
CPU

Remote FPGA
instance

Victim
Victim

Adversar y

Lo
gi

ca
l i

so
la

tio
n

Adversar y

Adversa ry

Remote FPGA
instances

Proprietar y

secret code

Classifier
selection

Fig. 2   Threat model. The top half illustrates the profiling phase, which results in a library of side-channel instruction classifiers, for a number of
FPGA instances and CPU and sensor placements. The bottom half shows the attack

76	 Journal of Hardware and Systems Security (2023) 7:72–99

In reality, a hypothetical attacker mounting a profil-
ing attack on soft processor cores would have to perform
a procedure similar to the one shown in Fig. 2. To pre-
pare for the attack, an adversary would start by renting an
FPGA instance as its only tenant. On this FPGA instance,
the adversary would need to calibrate the voltage fluctua-
tion sensors and use them to profile the execution of the
CPU instructions for various operating frequencies and
several CPU placements. Then, the attacker could train
side-channel instruction classifiers. This step would have
to be repeated for many FPGA instances, each uniquely
identified (e.g., by fingerprinting cloud FPGAs as sug-
gested by Tian et al. [56]).

To perform an exploit using the library of trained classifi-
ers, the attacker would need to rent a shared FPGA instance.
Using fingerprinting to identify the shared FPGA instance,
the attacker can focus on the subset of the classifiers in the
library trained on that particular FPGA instance. Once side-
channel traces are obtained, the adversary would need to
identify that the co-located user is using a soft-core CPU
(and repeat until a victim with a soft-core CPU is identi-
fied), using workload classification techniques [54]. Then
the attacker could further prune the subset of trained clas-
sifiers using the same workload classification techniques—
which can distinguish between different soft-core implemen-
tations in shared FPGAs—and run the inference. Finally, in
addition to the attack procedure, the attacker would need
to train models robust to noise from the shell or any other
accelerator the victim might be using alongside their soft
processor core.

Our aim is to evaluate how and under which circum-
stances soft-core CPUs leak instruction information in
shared FPGAs, we therefore focus on assessing instruction
leakage. We refer to related work for FPGA identification
and workload classification.

4 � Experimental Setup

The Sakura-X (Sasebo-GIII) board [33] and the Alveo
U200 datacenter accelerator card serve as our target
evaluation platforms. Sakura-X is an evaluation board
designed for power side-channel analysis and, hence,
commonly used in both cryptologic research [57, 58] and
research on side-channel attacks on shared FPGAs [22,
27, 59]. Sakura-X has one AMD Kintex-7 FPGA and one
AMD Spartan-6 FPGA. The former FPGA is the larger
of the two, often referred to as main or target FPGA, as
it hosts the adversary and the victim as two logically iso-
lated FPGA tenants. The second FPGA, often referred to
as auxiliary or control FPGA, reduces unwanted noise by
implementing the communication protocol between the
target FPGA and the host machine [33]. For our evalua-
tion, the Sakura-X architecture increases the already low
signal-to-noise ratio (SNR) of soft-core CPUs and helps
isolate the instruction-level power side-channel leak-
age. To evaluate the leakages in a more realistic, cloud-
scale FPGA scenario, we use the Alveo U200 datacenter
accelerator card. This card contains an AMD UltraScale+
XCU200-2FSGD2104E FPGA, and is commonly used
in publicly available cloud FPGA instances [2]. Unlike
Sakura-X, Alveo U200 contains a single FPGA consist-
ing of three super-logic regions (SLRs). The shell, con-
taining resources necessary for communicating with the
DRAM and host CPU, is instantiated in the middle SLR
and physically separated from both the attacker and the
victim. The placement of the sensor and the victim CPU
varies across experiments, however, in most cases, we
physically separate the sensors and the victim soft CPU
core to conform with the standard shared FPGA threat
scenario described in Sect. 3.

SHELL

FPGA

INDIVIDUAL SENSOR
CALIBRATIONS

SENSOR
TRACES
(FIFO)

CONTROLLER (FSM)

Victim

Adversary

RISC-V
CPU

INSTRUCTION
AND DA TA
MEMORY

start

start

end

end

HOST
PC

ctrl data ctrl data

SENSORS

POWER SUPPLY SIDE CHANNEL

IS
O

LA
T

IO
N...

Fig. 3   Overview of the experimental setup

77Journal of Hardware and Systems Security (2023) 7:72–99	

Figure 3 gives an overview of the experimental setup
for both boards. The target FPGA design contains the
victim and the hypothetical attacker logic and has four
main components: a soft-core RISC-V processor, the
on-chip voltage-drop sensors, the control finite state
machine (FSM), and the shell. As discussed in Sect. 1,
the primary purpose of using soft-core CPUs is to imple-
ment latency-critical control algorithms, especially
ones subject to change over time. Therefore, our study
assumes the victim uses small soft-core CPUs, common
in embedded bare-metal applications [60]. These soft-
core CPUs are usually lightweight, with no advanced
microarchitectural features such as cashing or specula-
tive execution. They have a low area overhead and can
run at high clock frequencies. Their microarchitectural
simplicity allows easy and tight integration with FPGA
hardware, facilitating low-latency communication. Inte-
grating larger soft-core CPUs would reduce the operating
frequency (e.g., Rocketchip can run on a couple of tens
of MHz only [61]), increase the area overhead (reduc-
ing the available resources for hardware accelerators),
and adversely affect the communication latency (as com-
munication would take place through memory mapped
interfaces or an operating system).

For the RISC-V soft-core designs, we chose RISCY
and PicoRV32, both openly available [11, 32]. Table 1
summarizes the FPGA resource overhead. As a reference,
we also show the resource usage of Rocket Chip [61], a
larger, more complex soft-core RISC-V implementation.
RISCY, used on the Sakura-X board, implements a clas-
sic five-stage pipeline and supports the complete RV32I
ISA at the cost of a lower operating clock frequency.
On Sakura-X, the maximum operating frequency of the
RISCY CPU is 100 MHz; however, our system runs it at
80 MHz, to have an integer number of sensor samples per
one CPU clock cycle. PicoRV32, used on the Alveo U200
board, has a multicycle CPU microarchitecture designed
to minimize resources and maximize the CPU operating
frequency. Our system runs PicoRV32 at the maximum
operating clock frequency of 320 MHz. In the following
subsections, we describe the voltage-drop sensors and the
controller in detail.

4.1 � FPGA Voltage-Drop Sensors

Commonly deployed FPGA voltage-drop sensors fall into
two groups: TDCs and RO-based sensors [49, 62]. They
both produce an output in the function of their circuit delay,
which is approximately inversely proportional to the sup-
ply voltage. Hence, the change in the sensor logic delays
indirectly exposes the core voltage fluctuations, caused by
the switching activity and power consumption of the vic-
tim [21]. The key criterion when choosing between a TDC
and an RO-based sensor is the required sensor sampling rate:
RO-based sensors cannot be sampled as frequently as TDC
sensors. However, RO-based sensors have a smaller foot-
print and need not be calibrated, unlike TDCs. Good use
cases for RO-based sensors are FPGA undervolting-based
attacks [53, 63] and covert communication [64]. For side-
channel analysis, given the importance of a high sampling
rate, TDCs are the preferred solution [22, 23, 28]; they are
able to record voltage fluctuations with sampling periods in
the nanosecond range [20].

The baseline design of a TDC was proposed by Zick
et al. [20]. It consisted of two principal components, (1) one
delay line implemented using fast carry chain logic and (2)
latches, connected to the output of every delay element in the
delay chain. At the input of the carry chain, a high-frequency
clock signal was connected; let us refer to it as input clock.
Another clock signal, the sampling clock, of the same fre-
quency but a slightly different phase, was used to capture
the propagation depth of the rising edge of the input clock
through the delay chain. The propagation depth reflected the
changes of the carry logic delay, which were primarily caused
by the power supply variations. More recently, TDC sensors
have replaced latches with flip flops and used a digital clock
manager (DCM) to control the phase delay between the input
and the sample clock. Proper selection of the phase shift and
the delay line length is critical for correct sensor calibration,
i.e., for ensuring that the rising edge is indeed captured and
not missed. Since the calibration is a lengthy process of trial
and error, in our attack model it must be automated. Hence,
we design and implement a TDC with a tunable phase shift
mechanism and, as suggested in previous work, we avoid
instantiating a DCM primitive to reduce jitter [65].

Table 1   Resource utilization of
the soft-core CPUs

CPU FPGA LUT FF BRAM36 DSP

RISCY [32] Kintex-7 2544 1944 40 0
XC7K160T-1FBGC

PicoRV32 [11] Virtex Ultrascale+ 1442 1473 8 0
XCU200-FSGD2104-2-E

Rocket Chip [61] Virtex Ultrascale+ 25785 12654 12 15
XCU200-FSGD2104-2-E

78	 Journal of Hardware and Systems Security (2023) 7:72–99

The design of our TDC is inspired by the implementa-
tion of Gnad et al. [16]. Its high-level architecture is shown
in Fig. 4. The TDC is composed of fine calibration slices,
coarse calibration slices, and an observable delay line, which
is periodically sampled and its state saved in the output
register. The input and the sample clocks are the same. To
control the phase shift between the input and the sample
clock, fine and coarse calibration slices are inserted on the
input clock path. In the fine calibration slice, as shown in
Fig. 5a, calibration inputs control the number of carry chain
multiplexers on the clock path. The fine calibration slices
are then connected to the coarse calibration slices (Fig. 5b),
where the calibration inputs control the number of coarser
delay elements on the clock path. In our TDC design, unlike
in Gnad et al. [16], coarse delay elements are implemented
as LUTs followed by latches, to achieve coarser delay incre-
ments. The third and last stage is the observable delay line
(Fig. 5c). This sensor is considered correctly calibrated when
the signal propagating through the chain of delay elements
reaches approximately the middle of the observable delay
line by the moment it gets captured in the output register.

In this work, TDC sensors have a 16-bit observable delay
line. Through experimentation, we found that this length is suf-
ficient to capture the supply voltage variations caused by the
CPU operation on both FPGA boards. Table 1 lists the FPGA
resources used for our TDC implementation on both boards.
The sensor clock frequency was set to 320 MHz on both boards,
the highest operating frequency that satisfied timing constraints.
Consequently, the sensor captures four samples per one clock
cycle of the RISCY CPU running at 80 MHz, and one sample
per clock cycle of the PicoRV32 CPU running at 320 MHz.

Previous work has shown that the side-channel information
captured by voltage-drop sensors varies with both the absolute
location of the sensors as well as their relative position to the
victim [66]. It is, therefore, to be expected that an attacker
may instantiate more than one power side-channel sensor. The
exact number is usually limited by the linearly scaling on-chip
memory resources and the data transfer word size. For exam-
ple, to improve the success of their attack, Gravellier et al. [24]
deployed eight sensors on an AMD Artix-7 FPGA. In our
experimental setup, we instantiate five TDCs on Sakura-X,

and 29 TDCs on Alveo U200, the highest number that fits in a
communication message exchanged between the FPGA [33]
and the host PC. In Sects. 6 and 7, we will show to what extent
having multiple sensors affects the attack efficiency.

4.2 � Controller

The controller coordinates the experiments by executing and
replying to the commands from the host machine through the
shell. It is in charge of initializing the CPU instruction memory
with the code to be executed, triggering the execution of the
code, and saving the corresponding sensor traces to the on-
chip memory. Once the CPU code execution is completed,
the controller receives a trigger from the CPU, which initiates
the transfer of sensor traces to the host machine. In each mes-
sage sent from the FPGA to the host, the controller inserts five
(Sakura-X) or 29 (Alveo U200) simultaneous sensor readings
and the 32-bit word of the corresponding CPU instruction. We
replace the default read-only instruction memory of both CPUs
with a dual-port block RAM, connecting one memory port to
the CPU while exposing the other port to the controller. This
temporary change permits the controller to write arbitrary code
in the CPU instruction memory before triggering its execution
and recording the side-channel traces.

Prior to starting the experiments, the controller calibrates
every sensor. The calibration is performed iteratively. First, a
test code sequence is loaded to the instruction memory, and the
number of elements in the sensor’s initial delay line is set to zero.
The code execution is triggered, and the obtained sensor trace is
inspected. If no clock transition is observed or the transition is
located too close to the two extremes of the observable delay line,
the fine and coarse calibration slices are adjusted. This process
is repeated until the sensor is calibrated. The calibration settings
are then communicated to the host machine for record keeping.

5 � Instruction Classification

Like all hardware circuits, soft-core CPUs leak information
through the power side channel. Various ALU operations,
memory accesses, and control-flow changes all impact power

Fig. 4   TDC sensor architec-
ture with a tunable phase shift
between the clock that enters
the observable delay line and
the clock that samples the
output (i.e., takes a snapshot of
the observable delay line). The
exact number of slices in our
implementation is in Table 2

CLK

Fine calibration slices

Coarse calibration slices

Observable delay line

SENSOR OUTPUT

. . .

.

79Journal of Hardware and Systems Security (2023) 7:72–99	

consumption differently. In addition, as a combination of fetch,
ALU, memory, and program counter operations, instructions
also leak information: in the form of unique patterns spread
across the time and amplitude domain of the recorded power

traces. For example, on the one hand, memory instructions
might have high power consumption both in the ALU stage,
when the address is computed, and in the later stages of
instruction execution, i.e., when the data is read/written to the

Fig. 5   The implementation of
each slice in the TDC sensor in
Fig. 4, including the calibration
and sensor output registers. For
space reasons, CARRY4 chain
is shown horizontally; in the
FPGA design layout, it spans
vertically

Table 2   Coarse calibration,
fine calibration, and observable
delay line slices per sensor

FPGA Fine calibration Coarse calibration Observable line

Kintex-7 24 slices 8 slices 4 slices
XC7K160T-1FBGC (= 96 stages) (= 32 LUTs and Latches) (= 16 FFs)
Virtex Ultrascale+ 12 slices 4 slices 2 slices
XCU200-FSGD2104-2-E (= 96 stages) (= 32 LUTs and Latches) (= 16 FFs)

80	 Journal of Hardware and Systems Security (2023) 7:72–99

memory. On the other hand, arithmetic instructions might only
have a power consumption peak during the ALU stage.

To analyze the instruction-level power side-channel leakage
of soft-core CPUs, we employ an ML-inspired method illus-
trated in Fig. 6. The key idea behind this approach is that leak-
age patterns are discovered during ML model training, while
the leakage is assessed using the prediction accuracy achieved
on templates unseen during training. For this purpose, we first
build a large set of template assembly codes for all the target
instructions: we generate a set of 10,000 templates for every
instruction. Once the templates database is ready, we run the
experiments to collect the corresponding power side-channel
traces. As leakage evaluators, we reduce the background noise
and improve the signal-to-noise ratio by executing each tem-
plate multiple times and averaging the side-channel traces:
100 times for Sakura-X and 1000 times for Alveo U200.
Even though our work represents an instruction-level leakage
analysis, averaging is still a commonly used noise reduction
approach even in real attack scenarios: for an attack, the victim
code is often executed frequently, allowing averaging, while
during training, the attacker can execute templates an arbitrary
amount of times [67–70]. Finally, to spread out the impact of
environmental noise equally across all instruction classes, we
record traces in an interleaved fashion: we record a single trace
of each class, in a round-robin order, before continuing the
acquisition of the next power trace. Subsequently, we prepare
the acquired side-channel traces for the training and inference
steps. Similar to previous work [67, 71, 72], we partition the
final dataset into a training set (for training the instruction clas-
sifier) and a test set, for evaluating the instruction classification
accuracy and the leakage learned by the models. The following
subsections explain the template generation and the training of
the side-channel instruction classifiers in greater detail.

5.1 � Instruction Template Generation

For our leakage analysis, we create two templating configura-
tions. In the first, denominated as N, the target instruction is
surrounded by NOP instructions. We use this set of templates
to analyze the instruction-level leakage without additional noise

from the surrounding instructions. In the second configuration,
denominated by R, we surround the target instruction with a
random instruction before and after. We use the R templating
configuration to analyze instruction-level leakage in the pres-
ence of other instructions, which represents a more realistic
leakage scenario: in practice, the target instruction will be sur-
rounded by a pair of random instructions instead of NOPs.

For both templating configurations, we generate 10,000
templates for every instruction from the RV32I ISA, which are
listed in Table 3. The process of template generation is detailed
in Algorithm 1. The first step is the initialization of x registers
with random values. Then, if needed, we insert additional prep-
aration instructions (e.g., to initialize the contents of a memory
location for the load instruction). The central and key part of
the template contains the target instruction itself: in the case of
N templating, similarly to previous work [71, 72], we surround
the target instruction with a few NOPs to separate it from the
setup phase, while in the case of R templating, we insert a ran-
dom instruction before and after, making sure the control flow

Instruction
template s

Sensor s

Is
ol

at
io

n

Buffer

CPU

Target FPGA

Traces ...

... ... Training
datase t

...

... ...

Training

...

... ...

Test
datase t

Classifier

Instruction
predictions

Fig. 6   Side-channel instruction leakage evaluation

81Journal of Hardware and Systems Security (2023) 7:72–99	

is not altered. Finally, at the end of the template code, we insert
an instruction with an invalid opcode, to trigger a signal to the
controller that the code execution is completed (see Fig. 3).

5.2 � Instruction Classification Models

Most power side-channel disassemblers in previous work
used traditional ML methods and common classification algo-
rithms, e.g., quadratic discriminant analysis (QDA), k-nearest
neighbors (k-NN), support vector machines (SVM), Gaussian
Diffusion Model (GDM) [67, 69, 71–73]. However, the accu-
racy of these algorithm-driven ML classifiers dramatically
depends on the preprocessing for dimensionality reduction
and feature extraction. Without suitable preprocessing, the
noise in the dataset can significantly affect the classification
results. For these reasons, previous research relied on the
high sampling rate of the oscilloscope to achieve reasonable
accuracy. In this work, considering the limited sampling fre-
quency of the on-chip sensors with respect to the soft-core
CPU operating frequency, besides testing how well the ML
methods proposed in previous work perform in this scenario,
we explore leakage analysis using DL-based classifiers.

First, we treat the side-channel instruction classification
as a time-series classification problem, as different instruc-
tions have unique patterns spread across the time and ampli-
tude domain. Since we use multiple sensors for classifica-
tion, we represent the trace of each sensor as a separate input
channel. Fig. 7 shows the classification process.

 A class of networks naturally suited to processing
sequential data is recurrent neural networks (RNNs), specifi-
cally long short-term memory (LSTM) models [74]. They
have an internal state that can represent context information,
and they keep information about past inputs for an amount
of time that is not fixed but depends on the weights and the
input data. As LSTMs do not perform well when directly
extracting features from raw data, they are commonly paired
with more complex networks for feature extraction [75,
76], such as convolution neural networks (CNNs). In prac-
tice, feature extraction with CNNs can be applied before
or after the LSTM model. Moreover, recent work showed
that 1D-CNNs consisting of single-dimensional convolu-
tional layers achieved good results in time-series classifi-
cation [77]. Finally, CNNs structured as residual networks
(ResNets) have shown to be very performant in time-series
classification, achieving high accuracy across a range of
datasets [77]. Therefore, we train and compare the follow-
ing models: LSTM, a small 1D-CNN, a large 1D-CNN, and
the combination of LSTM and 1D-CNN (LSTM followed by
1D-CNN and LSTM preceded by 1D-CNN), a multi-layer
perceptron (MLP), and a time-series ResNet [77].

6 � Evaluation on Sakura‑X

In this section, we provide a detailed instruction-level leakage
analysis on Sakura-X. The first step in experimental evalua-
tion is deciding the hypothetical attacker and victim’s place-
ment. Given the power delivery network imperfections and
knowing that side-channel leakage picked up by the sensors
varies with both the absolute and the relative positions of the
victim and the attacker [66], we opt to assign the victim to an
arbitrary FPGA region and vary the sensor placement.

Figures 8, 9, and 10 zoom in on the FPGA floorplan
containing three different placements of the target CPU and
the sensors. In the floorplan in Fig. 8, we place the sensors
inside the region occupied by the target CPU, in the top-left
clock region of the Kintex-7 FPGA (X0Y4). Even though
this floorplan does not conform to the standard shared
FPGA threat model—where the FPGA regions assigned to

Table 3   RV32I base integer instructions for template generation

Category Instructions

Arithmetic ADD, ADDI, SUB, LUI, AUIPC
Logical XOR, XORI, OR, ORI, AND, ANDI
Compare SLT, SLTI, SLTU, SLTIU
Shifts SLL, SLLI, SRL, SRLI, SRA, SRAI
Loads LB, LH, LW, LBU, LHU
Stores SB, SH, SW
Branches BEQ, BNE, BLT, BGE, BLTU, BGEU
Jump & Link JAL, JALR

Fig. 7   Classification process.
The power trace of each sensor
(S1 to SN) is used as one of N
input channels. The input is
then forwarded to the model,
and the instruction prediction
is collected for accuracy evalu-
ation

S1

SN
N input

channels Power tr ace
Instruction prediction

ML mode l

82	 Journal of Hardware and Systems Security (2023) 7:72–99

the tenants do not overlap—we use it as a worst-case leak-
age scenario for the evaluator (best-case scenario for the
attacker). In the floorplan in Fig. 9, we place our five sen-
sors to the right of the target—in the top-right clock region
(X1Y4)—in the space between the CPU and the edge of the
FPGA, simulating an attacker that spreads out the available
sensors across their entire FPGA region. In the floorplan
of Fig. 10, we move the target CPU one clock region down
(X0Y3), further away from the sensors. In the remainder of
this section, we will refer to the described floorplans as Exp-
IN, EXP-OUT1, and Exp-OUT2, respectively.

Using the leakage evaluation setup and following the
instruction classification method described in Sects. 4 and 5,
we create 10,000 templates per instruction (for both N and
R template types) and collect the corresponding power
side-channel traces, creating four datasets: Exp-IN-N, Exp-
OUT1-N, Exp-OUT1-R, and Exp-OUT2-N. We use the Exp-
IN-N dataset to evaluate the worst-case leakage (i.e., with
physical separation between the victim and the adversary
violated and no noise of surrounding instructions). Exp-
OUT1-N and Exp-OUT2-N are collected in addition to
Exp-IN-N to evaluate the impact of CPU and sensor place-
ment on the instruction-level leakage and model accuracy.
Finally, we use Exp-OUT1-R to evaluate the most realistic
scenario, where the templates contain the noise of the sur-
rounding instructions. With these four datasets, we cover
the three main goals of our instruction-level leakage evalu-
ation: worst-case for the evaluator (Exp-IN-N), the impact

of CPU and sensor placement on the accuracy (Exp-IN-N,
Exp-OUT1-N, Exp-OUT2-N), and a realistic case for the
attacker (Exp-OUT1-R).

We set the sensor trace length to � � �� samples (i.e., 60
consecutive readings of the TDC output register), to guarantee
that all the execution cycles of the instructions in Table 3 are
captured. To ensure we are capturing the correct instruction
execution, we align the start of all instructions to the same
sample in the traces (fourth sample): we center the traces
around the correct instruction using the recorded CPU opcode.

In our experimental evaluation, we first visually analyze
the recorded power traces for multiple sensor placements.
We show that instructions of different types show limited
visual leakage patterns, while the instructions of the same
type do not display any differences. To determine the limits
of the instruction-level leakage, we train a range of DL mod-
els on the four datasets and show how the accuracy changes
depending on the placement and template type. We also use
ML techniques to further evaluate the inter- and intra-type
instruction leakage and show that most of the classification
confusion comes from two or three instructions with similar
leakage. We show that preprocessing techniques and ML
approaches used in previous work are outperformed by DL
techniques. Finally, we evaluate the limits of the instruction-
level leakage by investigating the impact of the number of
sensors, averaging, and the dataset size on the accuracy.

6.1 � Visual Analysis of�Sensor Traces

Before analyzing leakage using the DL-based classification
methodology described in Sect. 5.2, we first visually analyze

2S 1S 0S4S 3S3S 2S 0S1SS4

Legend:

CPU
CPU BRAMs
TDC sensor s

Fig. 8   Sensor delay lines (in yellow) and CPU (in purple) in Exp-IN

S5S6S7S8S9

Legend:

CPU
CPU BRAMs
TDC sensor s

Fig. 9   Sensor delay lines (in yellow) and CPU (in purple) in Exp-
OUT1

S10S11S12S13S14

Legend:

CPU
CPU BRAMs
TDC sensor s

Fig. 10   Sensor delay lines (in yellow) and CPU (in purple) in Exp-
OUT2

83Journal of Hardware and Systems Security (2023) 7:72–99	

the recorded sensor traces. In our first experiment, we inves-
tigate how sensor placement impacts the waveforms and the
leakage in the traces. Figure 11 shows the average trace of
all templates of arithmetic and logical instructions across
all 15 sensors (five in each of the three floorplans) for the
Exp-IN-N, Exp-OUT1-N, and Exp-OUT2-N datasets. We
can observe that the sensor placement significantly impacts
the shape of the traces, including the peak-to-peak ratio:
S10, the furthest from the CPU, has a peak-to-peak ratio of
less than one, while S3 has a peak-to-peak ratio of almost
six. For some sensors (e.g., S4, S8, S7, S12, and S13), we
observe peaks every four samples, perfectly synchronized
with the CPU clock. For some other sensors (e.g., S1, S2,
and S4), we observe a different pattern: slight dips every
20 sensor samples (around samples 12, 32, and 52), cor-
responding to five CPU clock cycles, i.e., to the fetch of the
next instruction. This experiment already shows the benefit
of having multiple sensors for increasing the power side-
channel leakage.

In our next experiment, we visually inspect the inter-
type instruction leakage, i.e., how different instruction
types impact the shape of the recorded side-channel traces.

Figure 12 shows the average traces of sensor S9 (Exp-
OUT1-N) for the six instruction groups in Table 3. We
chose sensor S9, as the plots in Fig. 12 were most visually
distinguishable for this particular sensor and it represents
the worst-case scenario for an evaluator. The peak in sam-
ple 48 makes the load and store instructions clearly dis-
tinguishable from other groups. Branches and jumps also
contain a distinguishable peak centered around sample 28,
surrounded by dips on both sides. This experiment shows
that, after significant averaging, some distinct visual traits
can be attributed to specific instruction groups. However,
not all instruction groups can be identified visually. For
example, just like loads and stores, jumps and branches have
very similar power consumption traces, and it is difficult
to tell the exact instruction type from visual analysis alone.

As the final visual experiment, we compare the side-
channel traces of several instructions of the same instruc-
tion type. Figure 13 shows average sensor S3 traces for
eight instructions. We chose S3 because it is in the heart
of the soft-core CPU (Fig. 8), and it shows, when aver-
aged, the biggest visual differences between instructions
of the same type. On the left, we overlap the average traces
for OR, AND, ORI, and ANDI. The differences, located
between samples 10 and 20, are difficult to notice even
with averaging across all templates, as all four instruc-
tions use the same datapath. On the right, we overlap the
average traces of four branch instructions: BEQ, BNE,
BLT, and BGE. We practically see no difference between
these instructions and cannot distinguish them visually.
Therefore, even though the visual classification of instruc-
tions is possible for some victims (e.g., sizeable ML-based
accelerators [28]), soft-core CPUs require more advanced
methods for instruction-level leakage analysis.

6.2 � Deep Learning-Based Instruction Leakage
Evaluation

After showing that visual analysis is insufficient to iden-
tify CPU instructions executing on remote FPGAs, we
deploy advanced DL techniques. We obtain our four data-
sets by collecting all the sensor traces for each instruc-
tion in Table 3, as described in Sect. 5.2. Each data point,
corresponding to one instruction template, is represented
as a matrix with five rows, where each row, i.e., the input
channel, is the trace of one of the five sensors. Using the
newly created dataset, we first train our deep learning
models from Sect. 5.2 using 10-fold validation and com-
pare the resulting accuracy. Then, we compare the results
of our DL models with the classical ML methods previ-
ously proposed for side-channel disassembly attacks, and
we evaluate if frequency-based preprocessing methods, Fig. 11   Average sensor traces for the arithmetic and logical instruc-

tions in Table 3

84	 Journal of Hardware and Systems Security (2023) 7:72–99

shown promising in previous work [72], have any impact
on the extracted leakage. Furthermore, we evaluate how
the number of sensors used in the attack impacts the final
accuracy. Finally, we evaluate how the amount of averag-
ing or a smaller dataset size can impact the leakage, i.e.,
the best model accuracy.

To train our deep learning models, we set the number of
epochs and the batch size to 100 and 64, respectively. We use
the Adam optimizer with an initial learning rate of 0.0001
and the loss to monitor and adjust the learning rate. Table 4
summarizes the model details. To facilitate reproducibility,
we choose deep learning models with standardized param-
eters and openly available implementations [77, 78].

Table 5 lists the average test accuracy obtained with the
four datasets, with the highest accuracy in bold. We can
observe that overall, ResNet and 1D-CNN2, the two most
complex DL models, achieve the highest accuracy for all
datasets. Results in Table 5 also show that models with-
out convolutional layers do not manage to extract leakage
well and result in low classification accuracy. Moreover, the
accuracy drops as the sensors are placed further away from
the target CPU. For example, for the best model (ResNet),
Exp-OUT1-N has a 16.07% lower accuracy than Exp-IN-
N, and Exp-OUT2-N has a 22.5% lower accuracy than
Exp-OUT1-N. Therefore, an evaluator testing local CPU
leakage with sensors placed inside the CPU will achieve

	Instruction-Level Power Side-Channel Leakage Evaluation of Soft-Core CPUs on Shared FPGAs
	Abstract
	1 Introduction
	2 Background
	3 Threat Model
	4 Experimental Setup
	4.1 FPGA Voltage-Drop Sensors
	4.2 Controller

	5 Instruction Classification
	5.1 Instruction Template Generation
	5.2 Instruction Classification Models

	6 Evaluation on Sakura-X
	6.1 Visual Analysis of Sensor Traces
	6.2 Deep Learning-Based Instruction Leakage Evaluation
	6.3 Impact of Preprocessing On Instruction Leakage
	6.4 Comparison with Classical ML Approaches
	6.5 Impact of the Number of Sensors on Instruction Leakage
	6.6 Impact of Averaging on Instruction Leakage
	6.7 Impact of the Dataset Size on Instruction Leakage

	7 Evaluation on Alveo U200
	7.1 Instruction-Level Leakage on Cloud-Scale FPGAs
	7.2 Code Sequence Classification

	8 Discussion
	9 Countermeasures
	10 Limitations and Future Work
	11 Related Work
	11.1 Power Analysis Attacks on Shared FPGAs
	11.2 Power Side-Channel Disassembly Attacks

	12 Conclusions
	References

